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1 Introduction

The Klebanov-Strassler supergravity solution, which corresponds to a certain vacuum of

the SU(k(M + 1)) × SU(kM) gauge theory [1], provides an interesting and rich example

of the gauge/string duality [2–4]. It generalizes the duality between the superconformal

SU(N) × SU(N) gauge theory with bi-fundamentals and string theory on AdS5 × T 1,1 [5].

Adding extra colors to one of the gauge groups breaks the conformal symmetry [6–8] and

leads to the cascade behavior [1, 9, 10]. The gauge group SU(k(M +1))×SU(kM) shrinks

to SU(M) at the bottom of the cascade and the KS theory reduces to the pure gauge N = 1

SYM [1]. Unfortunately such a limit requires small gsM , which makes the supergravity

approximation invalid. Nevertheless this connection between the KS solution and the pure
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super-Yang-Mills theory strongly motivates the studies of the bi-fundamental free sector of

the SU(k(M + 1)) × SU(kM) theory that survives at the bottom of the cascade.

The KS solution is invariant under the Z2 symmetry I, which acts by exchanging

the two two-spheres of the deformed conifold accompanied by the inversion of sign of

the 3-form flux. On the field theory side this symmetry exchanges and conjugates the

bi-fundamental fields A and B. Thus the KS solution corresponds to one particular I-

invariant vacuum |A|2 = |B|2. The latter spontaneously breaks U(1)Baryon symmetry

A → Aeia, B → Be−ia. The corresponding massless Goldstone pseudoscalar a combines

with the scalar U ∼ |A|2−|B|2 into a I-odd scalar supermultiplet [11]. While a corresponds

to the longitudinal part of the U(1)Baryon current Jµ = ∂µa, the fluctuation of U changes the

expectation values of the baryon operators A, B and moves the theory along the baryonic

branch of the moduli space [11–14].

The massless I-odd supermultiplet (U, a) was first studied in [11]. Later this analysis

was generalized to the massive excitations in [15]. In particular it was shown that the

massive excitations of U mix with another I-odd scalar χ, which comes from the NS-NS

sector. It was also suggested there that the massive states of the pseudoscalar a are eaten by

a gauge vector and form a massive vector state similarly to the Goldstone boson associated

with the chiral symmetry breaking in the Sakai-Sugimoto model [16]. The massive vector

is dual to the baryonic current Jµ, and it generalizes the massless Betti vector of the

conformal theory. The massive modes of Jµ together with the massive modes of U combine

into a tower of massive vector supermultiplets. To accommodate the mixing between U

and χ the Betti vector must mix with another massive vector also from the NS-NS sector.

The resulting spectrum of the coupled vector system must coincide with that one of the

scalar system (U,χ) found in [15].

The symmetry between the NS-NS and RR sectors in the conformal case suggests that

in addition to the scalar χ there should be another scalar χ̃ from the R-R sector. The

later was found in [15] to decouple from all other excitations in the KS case. It was also

conjectured there that χ̃ is a superpartner of yet another massive vector, which also comes

from the R-R sector.

This picture with three massive vectors dual to U , χ and χ̃ was supported in [15] by

a calculation in the simplified Klebanov-Tseytlin background. Although the particles in

question form three complete supermultiplets (we have in mind only bosonic states here)

there must be more bosonic states in the I-odd sector. Indeed the analysis of the conformal

Klebanov-Witten case reveals that the three scalars and three vectors do not complete a

representation of the superconformal symmetry.

In this paper we find all other I-odd bosonic states in the full KS background. Starting

with the most general I-odd ansatz in the SU(2)×SU(2) singlet sector we find that the three

massive vectors, predicted in [15], mix with other four massive spin 1 states. This leads

to the appearance of two new massive supermultiplets in the spectrum, each containing

a vector, a pseudovector and two fermions of spin 1/2 and 3/2. The three spin 0 and

seven spin 1 particles completely span the set of the bosonic components of the shortened

Vector Multiplet I and Gravitino Multiplets II and IV [17, 18] of the superconformal KW

theory. In this way the spectrum of the I-odd bosonic SU(2)×SU(2)-invariant supergravity

excitations over the KS background is fully covered.

– 2 –
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The comparison with the conformal case suggests that the lightest vector multiplet

(and the corresponding tower) is created by the operators from the composite superfield

TrAeV Āe−V − TrBeV B̄e−V , while the rest of the massive states are created by the pure

super-Yang-Mills operator Tr eV W̄α̇e
−VW 2. The latter do not contain bi-fundamental

fields. Therefore the spectrum of the corresponding glueballs, which we study numerically,

might shed a light on the dynamics of the glueball states in the pure N = 1 SYM theory.

We further speculate on this point in section 6.

This paper is organized as follows. In the next section we write down the general

I-odd singlet ansatz and discuss its relation to the conformal case. Then we find and solve

the corresponding equations of motion in sections 3 and 4. The fifth section is devoted to

the analysis of the results obtained in the preceding sections. Numerical calculation of the

spectra for the new multiplets is followed by the discussion of their quantum numbers and

peculiarities in the procedure of calculating scaling dimensions. In the end of section 5 we

also discuss the field theory operators dual to the I-odd sector. Section 6 concludes the

paper with a discussion of the results.

2 I-odd excitations over the KS background

2.1 General ansatz

We consider the I-odd supergravity excitations over the KS background which are singlets

w.r.t. the action of SU(2)×SU(2) R-symmetry group. The I-symmetry of the KS solution

acts on the conifold geometry by interchanging the two spheres (θ1, φ1) and (θ2, φ2), simul-

taneously changing the sign of F3 and H3. Hence we are looking for the perturbations of

B2 and C2 invariant under the exchange of the two-spheres and the perturbations of metric

and C4 which are odd under (θ1, φ1) ↔ (θ2, φ2).

The list of SU(2) × SU(2)-invariant, forms on the conifold includes the one-form dτ

along the radius and invariant forms on the “base” of the deformed conifold T 1,1. There is

a unique invariant one-form g5, which is I-even. It satisfies

⋆ d ⋆ dg5 = 8g5. (2.1)

Below ⋆ will denote the Hodge operation on T 1,1, while ∗ and ∗4 will refer to the same

operation in the ten-dimensional or four-dimensional spaces respectively.

There are three I-odd SU(2) × SU(2) invariant two-forms: g1 ∧ g2, g3 ∧ g4 and

g1 ∧ g3 + g2 ∧ g4 (see [19] for definitions). In addition there are two I-even two-forms

dg5 = −(g1∧g4+g3∧g2) and dτ∧g5, which are not independent. Any fluctuation including

dg5 can be transformed into the fluctuation with g5 or dτ ∧ g5 with the help of a suitable

gauge transformation.

The invariant two-forms mentioned above can be combined into two eigenvectors of

the Laplace-Beltrami operator ⋆d on T 1,1 as follows:

ω2 = g1 ∧ g2 + g3 ∧ g4 , d ⋆ ω2 = 0 , dω2 = 0 , (2.2)

Y2 = (g1 ∧ g2 − g3 ∧ g4) + i(g1 ∧ g3 + g2 ∧ g4) , d ⋆ Y2 = 0, ⋆dY2 = 3i Y2.

(2.3)

– 3 –
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There are also three and four forms on T 1,1 invariant under SU(2) × SU(2), but they

all can be obtained from the forms above using the exterior differentiation and the Hodge

transformation. The only I-odd SU(2)×SU(2)-invariant metric fluctuation is g1 ·g2+g3 ·g4.

The Hodge duality in Minkowski space allows one to relate the p- and (4− p)-forms to

each other. That is why the general ansatz can be written in terms of zero, one and two-

forms in Minkowski space. It is also known that any form has a Hodge decomposition into

the sum of an exact, co-exact and harmonic parts. The field theory in the Z2-symmetric

vacuum dual to the KS background does not have any spontaneously broken symmetries

besides U(1)Baryon. Therefore we do not expect any SU(2)×SU(2) singlet massless particles

in addition to those associated with the baryonic branch of the moduli space. The latter

were studied in [11, 15, 20]. That is why we are looking only for massive excitations, i.e.

all four-dimensional forms Pk in our ansatz satisfy

�4Pk = m2Pk (2.4)

with some non-zero m2. It means that the harmonic part is absent from the decomposition

(which is not generally the case for the four-dimensional massless modes). Therefore, any

two-form P2 can be written using the two vectors (one-forms) M and N:1

P2 = d4M + ∗4d4N . (2.5)

Similarly, any vector N can be represented as a sum of an exact and a co-closed parts:

N = d4χ+ Ñ , (2.6)

where

d4 ∗4 Ñ = 0 . (2.7)

This consideration shows that all the I-odd excitations over the KS background reduce

to some vector and scalar ansatz. At this point we do not make a distinction between the

particles with different behavior with respect to parity; i.e. vectors and axial vectors, scalars

and axial scalars. For the sake of simplicity we call all states of spin 1 “vectors” and all

states of spin 0 “scalars”. The quantum numbers of the physical states, including parity,

are given in figure 1 in section 5.1.

The most general scalar ansatz was considered in [15]. Namely, there are the following

two decoupled systems of excitations,

δB2 = χ(x, τ) dg5 + ∂µσ(x, τ) dxµ ∧ g5 ,

δG13 = δG24 = U(x, τ) ,
(2.8)

and

δC2 = χ̃(x, τ) dg5 + ∂µσ̃(x, τ) dxµ ∧ g5 . (2.9)

1We use the boldface notation for the spin 1 excitations throughout the paper.
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As it was mentioned above, the terms proportional to dτ ∧ g5 are absent because they can

be transformed into (2.8) and (2.9) with help of a gauge transformation.

One could seemingly add the I-odd scalar excitations of F5,

δF5 = (1 + ∗)
[

dτ ∧ (d4a ∧ g1 ∧ g2 + d4b ∧ g3 ∧ g4) ∧ g5
]

; (2.10)

or

δF5 = (1 + ∗)
[

d4c ∧ dτ(g1 ∧ g3 + g2 ∧ g4) ∧ g5
]

. (2.11)

However, equations of motion would require the functions a, b and c to vanish identically.2

After some redefinition of the variables the equations of motion become

z′′ − 2

sinh2 τ
z + m̃2 I(τ)

K2(τ)
z = 22/3m̃K(τ)w , (2.12)

w′′ − cosh2 τ + 1

sinh2 τ
w + m̃2 I(τ)

K2(τ)
w = 22/3m̃K(τ) z (2.13)

for (2.8) and

w̃′′ − cosh2 τ + 1

sinh2 τ
w̃ + m̃2 I(τ)

K(τ)2
w̃ = 0 (2.14)

for (2.9) respectively [15]. The definitions of the background functions K(τ), I(τ) in

the above expressions can be found in the appendix A, while the four-dimensional mass

normalization m̃ is defined by (B.2).

The most general SU(2)×SU(2) singlet I-odd vector excitation of the 3-form potentials

is as follows:

C(1) ∧ dτ + C(2) ∧ g5 + ∗4d4C
(3). (2.15)

For the 5-form the most general vector perturbation is

(1 + ∗)
[

F(1) ∧ dτ ∧ g5 ∧ g1 ∧ g2 + F(2) ∧ dτ ∧ g5 ∧ g3 ∧ g4 +

+F(3) ∧ dτ ∧ g5 ∧ (g1 ∧ g3+g2 ∧ g4)+(d4F
(4) + ∗4d4F

(5)) ∧ g5 ∧ g1 ∧ g2+ (2.16)

+ (d4F
(6) + ∗4d4F

(7)) ∧ g5 ∧ g3 ∧ g4+(d4F
(8)+∗4d4F

(9)) ∧ g5 ∧ (g1∧g3+g2 ∧ g4)
]

.

Not all fifteen (3+3+9) real vectors above are independent. This ansatz has only seven

independent vector degrees of freedom. We show this in the next section by considering

the conformal KW case.

2.2 Supermultiplet structure in the conformal case

We start our analysis with the scalar U of [11, 15] dual to the operator Tr
(

|A|2 − |B|2
)

of

dimension 2 [13]. In the conformal case this operator is responsible for the resolution of

the conifold. The corresponding state belongs to the Betti multiplet [21]. The latter also

2Note that this is not the case for the massless particles [11].
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Field reps ∆ R Mode

aµ (1/2, 1/2) 5 0 C(2), (χ, χ̃)

b±µν (1, 0), (0, 1) 5 ∓2 F(1) − F(2), F(3)

aµν (1, 0), (0, 1) 6 0 C(3)

Field reps ∆ R Mode

φµ (1/2, 1/2) 3 0 F(1) + F(2)

φ (0, 0) 2 0 U

Table 1. Shortened Gravitino Multiplets II, IV (left) and Vector Multiplet I (right) [17, 18]. Field

notations are inherited from [22].

contains a 5d-massless gauge vector of dimension 3 dual to the baryonic current. Its pres-

ence on the gravity side is guaranteed by the nontrivial harmonic three-form w3 = ⋆ w2

on T 1,1. The Betti multiplet is a “massless” Vector Multiplet I according to the classifica-

tion of the superconformal multiplets given in [17, 18]. It is a short version of the Vector

Multiplet I, which contains just two bosonic states of dimensions 2 and 3.

In the table 1 we match the components of the five-dimensional superconformal mul-

tiplets of [17] to the four-dimensional fluctuations considered in the previous section. The

identification of U as φ from the table 1 is straightforward. The Betti vector φµ,

δC4 = φµ ∧ ω3 , (2.17)

is contained in (2.16). The combination F(1) + F(2) is identified with the derivative of φµ

with respect to τ and the remaining functions F(3), . . . ,F(9) are dependent on F(1) + F(2).

The scalars χ, χ̃ have dimension 5 = 2 +
√

1 + 8 as it follows from (2.1). The same

result follows from the large τ behavior of (2.13) and (2.14). Consequently χ, χ̃ are the

longitudinal modes of the five-dimensional vectors aµ from the Gravitino Multiplets of

type II and IV. It is convenient to consider these multiplets together combining the modes

into the complex combinations like

δB2 + i δC2 = aµ ∧ g5 . (2.18)

Similarly the complex vector C(2) from (2.15) corresponds to the vector part of aµ. It

has dimension 5 in the KW case as well. The complex vectors C(1),C(3) correspond to the

antisymmetric tensor aµν and have dimension 6. Only one of them is independent on-shell.

Although the fluctuations of the RR four-form C4 are real they can be parameterized

with help of complex bµν ,

δC4 = bµν ∧ Y2 + c.c. . (2.19)

By comparing (2.19) to (2.16) we identify the real components of bµν with F(1) −F(2) and

F(3). All other vectors F(4), . . . ,F(9) are not independent on-shell. These fluctuations have

dimension 5 = 2 + |3| due to (2.3) and also belong to the Gravitino Multiplets II and IV.

In the SU(2)×SU(2) invariant sector only shortened version of the Gravitino Multiplets

II and IV appear. Thus we do not expect any other massive bosonic states in the I-odd

sector. This agrees with our study of the ansatz (2.15), (2.16) in the following section.

There are two ways one can look at the system given by the vector ansatz (2.15), (2.16)

and the scalar ansatz (2.8), (2.9). First, one can classify the states according to the com-

plex representation of the superconformal symmetry. Second, one can look for the states

– 6 –
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of definite parity. The second approach is more straightforward. In particular, as it is

demonstrated in [15] the definite parity R-R and NS-NS sectors decouple from each other,

although they are a mixture of states from the superconformal Gravitino Multiplets. There-

fore instead of dealing with the Gravitino Multiplets II and IV independently we will refer

to the combination of the Gravitino Multiplets II and IV just as to the “Gravitino Multi-

plets” and specify the parity where appropriate. That is why we combined the Gravitino

Multiplets II and IV together in the table 1.

More precisely, the study of the KS case in [15] implies the following. The scalar U

from the Vector Multiplet I mixes with the scalar χ from NS-NS sector of the Gravitino

Multiplets, while the pseudoscalar χ̃ from the R-R sector decouples. At the same time

the calculation done there in the large τ approximation shows that the Betti pseudovector

mixes with the pseudovector part of aµ from the R-R sector, though both decouple from

the vector part of aµ from the NS-NS sector. This suggests that the vector excitations

from the Gravitino Multiplets and the Vector Multiplet I split into the following two non-

interacting systems. One includes the spin 1 states of positive parity from aµ, aµν (NS-NS

sector) and one of the bµν modes. Another consists of the spin 1 states of negative parity

and includes the vectors from aµ, aµν (R-R sector) and another bµν mode together with

the Betti pseudovector.

3 Triplet of vectors from the gravitino multiplets

This section analyzes the vector fluctuations from the Gravitino Multiplets, more precisely

a combination of the Gravitino Multiplets II and IV with negative parity. The system of

the linearized equations in this subsector reduces to three coupled equations, which can be

disentangled. Here we present only the results of our analysis. The reader can find more

details of the calculations in the appendix B.

3.1 Derivation of the equations

We start with writing down a general ansatz for the spin 1 excitations in the “NS-NS

sector” of the Gravitino Multiplets and show that they decouple from the other vectors.

The deformations of the three and five-forms are:

δB2 = ∗4d4H + A ∧ g5 , (3.1)

δC2 = E ∧ dτ , (3.2)

δF5 = (1 + ∗)
[

d4K ∧ dτ ∧ g1 ∧ g2 + d4L ∧ dτ ∧ g3 ∧ g4

+d4M ∧ (g1 ∧ g3 + g2 ∧ g4) ∧ g5 + N ∧ dτ ∧ (g1 ∧ g3 + g2 ∧ g4) ∧ g5
]

. (3.3)

As it was discussed in section 2, vector A corresponds to aµ, vectors E and H to aµν

and K, L, M, N to bµν of the conformal case. The equations of motion presented in the

appendix B show that E, K, L and M depend on the A, H, N algebraically. The latter

describe the physical degrees of freedom. After redefining N and A:

G55

√
h

N = �4Ñ , (3.4)

K2 sinh τ A = Ã ; (3.5)

– 7 –
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the resulting equations take the form:

Ñ′′ −
(

cosh2 τ + 1

sinh2 τ
+

4 · 21/3(F ′)2

IK2 sinh2 τ

)

Ñ + m̃2 I

K2
Ñ+

+F ′H′ − 21/3F ′ℓ

IK2 sinh2 τ
H +

F ′

K2 sinh τ
Ã = 0 , (3.6)

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã + m̃2 4 · 21/3F ′

K2 sinh τ
Ñ = 0 , (3.7)

H′′ +

(

2

(

K sinh τ
)′

K sinh τ
+
I ′

I

)

H′

−
(

21/3ℓ′

IK2 sinh2 τ
+

22/3ℓ2

I2K4 sinh4 τ

)

H + m̃2 I

K2
H−

− 4 · 21/3

IK2 sinh2 τ

(

F ′Ñ
)′ − 4 · 22/3F ′ℓ

I2K4 sinh4 τ
Ñ = 0 . (3.8)

Our goal here is to diagonalize the above system. In particular, we expect to identify

the massive vector superpartner of the scalar (2.9).

3.2 Analysis of the equations

Although the equations (3.6)–(3.8) look bulky it is quite easy to split them to three inde-

pendent equations. First we notice that the constraint Ñ = 0 implies

H =
(sinh τÃ)′

m̃2I sinh2 τ
, (3.9)

and it reduces the system (3.6)–(3.8) to one equation

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã = 0 . (3.10)

This equation coincides with the one for the scalar χ̃ (2.14). Hence the vector mode above

and the scalar (2.14) form a massive vector j = 1/2 multiplet3 as was predicted in [15]. It

is interesting to notice that Ñ = 0 does not imply δF5 = 0 as it would in the conformal

case. Rather F5 = (1 + ∗) d4H ∧H3 with H being related to Ã by (3.9).

To find the two remaining modes we impose a constraint

H̃ = −K(sinh τÃ)′

m̃2
√
I sinh τ

, (3.11)

where H̃ =
√
IK sinh τ H. This constraint guarantees that the two remaining modes are

orthogonal to the vector mode from above. More details on the disentanglement procedure

can be found in the appendix B. Eliminating H̃ from the above equations one obtains

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã− 2m̃2I ′

K3 sinh τ
Ñ = 0 , (3.12)

Ñ′′ − cosh2 τ + 1

sinh2 τ
Ñ + m̃2 I

K2
Ñ − 2−1/3I ′

K3 sinh τ
Ã = 0 . (3.13)

3We use spin j to characterize the massive supermultiplets (j − 1/2) ⊕ j ⊕ j ⊕ (j + 1/2).

– 8 –
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After a trivial rescaling and change of variables X± = Ã ± 22/3m̃Ñ these two

equations decouple,

X′′
± − cosh2 τ + 1

sinh2 τ
X± + m̃2 I

K2
X± ∓ 25/3m̃F ′

K2 sinh τ
X± = 0 . (3.14)

In the next section we are going to show that these particles are members of the two j = 1

gravitino multiplets and find their vector superpartners.

4 Betti vector and axial vector triplet

In this section we consider the vector excitations in the parity even “R-R sector” of the

combination of the Gravitino Multiplets and the axial Betti vector from Vector Multi-

plet I. We expect this system of four vectors to contain the superpartners of the scalar

excitations (2.8) and the two vectors X± from section 3.

4.1 Derivation of the equations

We consider the following deformations of the 3-form potentials

δB2 = J ∧ dτ , (4.1)

δC2 = C ∧ g5 + ∗4d4D , (4.2)

and the 5-form

δF5 = (1 + ∗)
[

F ∧ dτ ∧ g1 ∧ g2 ∧ g5 + G ∧ dτ ∧ g3 ∧ g4 ∧ g5 (4.3)

+d4P ∧ g1 ∧ g2 ∧ g5 + d4Q ∧ g3 ∧ g4 ∧ g5 + d4R ∧ dτ ∧ (g1 ∧ g3 + g2 ∧ g4)
]

.

Clearly in the conformal limit C corresponds to aµ, while J and D to aµν . The fluctuations

of F5 correspond to both bµν and φµ.

Choosing C,D,F,and G as independent variables we end up with the following system

of four coupled equations:

B′′
+ − 2

sinh2 τ
B+ + m̃2 I

K2
B+ +K3 sinh τ(D′ − J) −KC̃ = 0 , (4.4)

B′′
− − cosh2 τ + 1

sinh2 τ
B− + m̃2 I

K2
B− + 2−1/3 I

′

K
(D′ − J) +

2−1/3I ′

K3 sinh τ
C̃ = 0 , (4.5)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ − 21/3m̃2KB+ + m̃2 I ′

K3 sinh τ
B− = 0, (4.6)

D′′ +
(

log(IK2 sinh2 τ)
)′

D′ + m̃2 I

K2
D +

(I ′K2 sinh2 τ)′

IK2 sinh2 τ
D +

+
I ′

I
J − 1

IK2 sinh2 τ

(

21/3K3 sinh τ B+ +
I ′

K
B−

)′
= 0 ; (4.7)

where

J = −I
′

I
D +

21/3K

I sinh τ
B+ +

I ′

IK3 sinh2 τ
B− . (4.8)
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Here we introduced new variables as follows:

G55

√
h

coth2 τ

2
F = coth

τ

2
�4F̃ , (4.9)

G55

√
h

tanh2 τ

2
G = tanh

τ

2
�4G̃ , (4.10)

B± = F̃ ± G̃ , (4.11)

C̃ = K2 sinh τC . (4.12)

4.2 Analysis of the equations

The system of the equations (4.4)–(4.7) can be further reduced. The hint is to consider a

conformal limit when the Betti vector decouples from the Gravitino Multiplet states. The

former is associated with F = G while the perturbation bµν from the Gravitino Multiplet

corresponds to F = −G. We put

B− = 0 , (4.13)

to “turn of” the excitation of bµν in the system (4.4)–(4.7). This implies for D

D =
(sinh τ C̃)′

m̃2I sinh2 τ
. (4.14)

The remaining equations form a self-consistent subsystem of two equations:

B′′
+ − 2

sinh2 τ
B+ + m̃2 I

K2
B+ = 2KC̃ , (4.15)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = 21/3m̃2KB+ . (4.16)

After a trivial rescaling of variables it reproduces the scalar equations (2.12) and (2.13).

Thus these modes represent the mixing of the Betti vector with the vector part of aµ. They

are the vector superpartners of the scalar excitations z and w discovered in [15].

To extract the remaining degrees of freedom we “turn off” the Betti vector by choosing

B+ = 0 . (4.17)

Using this equation one can eliminate D from the remaining equations

D = − (sinh τ C̃)′

m̃2I sinh2 τ
. (4.18)

The remaining self-consistent subsystem of the two equations for B− and C̃ is

B′′
− − cosh2 τ + 1

sinh2 τ
B− + m̃2 I

K2
B− = − 22/3I ′

K3 sinh τ
C̃ , (4.19)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = −m̃2 I ′

K3 sinh τ
B− . (4.20)
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Spectrum of X− Spectrum of X+

m̃2
− = 0.633 + 1.02n + 0.287n2 m̃2

+ = 1.44 + 1.31n + 0.288n2

1.89 3.83 6.31 9.34 12.9 17.1

21.9 27.2 33.1 39.5 46.6 54.2

62.4 71.2 80.6 90.5

3.01 5.20 7.96 11.3 15.2 19.7

24.7 30.3 36.5 43.3 50.7 58.6

67.1 76.2 85.9 96.1

Table 2. Lowest values of m̃2 and quadratic fit for the j = 1 multiplets described by (3.14).

After a trivial rescaling and change of variables Y± = 2−1/3m̃B−∓C̃ the equations become

Y′′
± − cosh2 τ + 1

sinh2 τ
Y± + m̃2 I

K2
Y± ∓ 25/3m̃F ′

K2 sinh τ
Y± = 0 . (4.21)

These equations exactly coincide with the system (3.14), which suggests that we have found

the members of the same supermultiplets. Namely, we have the two j = 1 supermultiplets

each containing a vector X, an axial vector Y and two fermions of spin 1/2 and 3/2.

The spectra of the vector supermultiplets, which include scalars, were found in [15].

We devote section 5.1 to the numerical study of the spectra of the j = 1 multiplets (3.14).

5 Analysis of the results

5.1 Numerical calculation of spectra

In this work we only need to compute the spectra of the decoupled differential equa-

tions (3.14) or (4.21), which describe four vector excitations X±,Y± found above. The

spectra of the other three vector excitations are the same as of their scalar superpart-

ners (2.12), (2.13) and (2.14). They were already computed in [15].

We follow the conventions of the work [15], which uses the following definition of the

warp-factor:

h(τ) = 4 · 22/3ǫ−8/3I(τ) , (5.1)

where

I(τ) ≡
∫ ∞

τ
dx

x coth x− 1

sinh2 x
(sinh(2x) − 2x)1/3 . (5.2)

The eigenvalues are computed in units of m̃2, defined in (B.2). The shooting method

for equations (3.14) gives the two spectra listed in the table 2. In the units used by

Berg et.al. [23] the lowest states have masses

m̃2
− = 1.78; m̃2

+ = 2.83.

In the figure 1 we collected the information about the spectrum of the I-odd sector.

It contains two massless scalars [11], the lightest massive scalars from massive vector mul-

tiplets [15], and lightest vectors from the seven vector towers discovered in this work. We

have also added to the figure two I-even bosonic states from the lightest graviton multiplet,

a tensor 2++ state [25] and a vector 1++ dual to the U(1)R current [26]. These states share
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0

1

2

3

4

5

6

0

1

2

3

4

5

6

1 + + 2 + +

0 + - 1 + - 0 - -

1 - -

1 - -

0 - -
1 - -

1 + -

1 + -

1 + - 0 + -
++ -+ +- --

JPC m̃2

1+−, 0+− 4.53

1+−, 1−− 3.01

0−−, 1−− 2.41

1+−, 1−− 1.89

1++, 2++ 1.12

0+−, 1+− 0.129

0+−, 0−− 0

Figure 1. Values of m̃2 and JPC quantum numbers of the states from the SU(2)×SU(2) invariant

I-odd sector. Each infinite tower is represented by its lightest massive mode. Also in the figure:

the massless scalar multiplet and the lightest states of the I-even Graviton multiplet 1++, 2++.

the spectrum of the “minimal” scalar and hence the lowest mass of their spectrum is a

natural reference point. More I-even scalar glueballs were found in the works [23, 24].

The quantum numbers of the I-odd scalars from figure 1 were identified in [15]. The

massless states are a scalar and a pseudoscalar; 0+− and 0−−. The corresponding tower

of massive states is described by a vector multiplet, which contains a scalar 0+− and

a pseudovector 1+−. The latter mixes with another massive vector multiplet from the

ansatz (4.1), (4.2) and (4.3). Hence both of them should have the same quantum numbers

from above 1+−. The vector state from the vector multiplet described by (3.1), (3.2)

and (3.3) has opposite parity transformations and therefore describes the 1−− vector state.

One can draw the same conclusion by looking at the supermultiplet structure: this vector

lies in the same supermultiplet with the pseudoscalar 0−−. The quantum numbers of

the remaining four vectors are straightforward. The ones described by (4.1)–(4.3) are

pseudovectors 1+− and the other two from (3.1)–(3.3) are vectors 1−−.

Two mixing vector multiplets consisting of the 0+− scalar and the 1+− vector cor-

respond to the operators of different dimensions. Therefore their spectra are significantly

different. To identify the spectra we associate the lighter modes with the operators of lower

dimensions. Thus following [15], we identify the lightest massive multiplet in the figure 1

to correspond to the U(1)Baryon current (Betti) multiplet, which contains a scalar and a

vector of dimensions 2 and 3 respectively.

As seen from the figure 1, the states from the Betti multiplet are much lighter than

the other glueballs from the I-odd sector and the known states from the I-even sector.

It would be interesting to compare the mass of the lightest state from the Betti Multiplet

with the mass of the lightest glueball created by the chiral operator Tr(AB). Despite a

charge under the SU(2) × SU(2) symmetry, the latter has the lowest dimension in the

KS theory; ∆ = 3/2. Therefore the corresponding state is a natural candidate to be the

lightest massive mode in the KS spectrum.
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5.2 Scaling dimensions and SQM

The KS solution explicitly breaks both conformal and U(1)R symmetries. Therefore the

fluctuations with different scaling dimensions and R-charges can mix with each other. In-

deed we saw earlier in section 4 that the uncharged Betti vector mixes with the perturbation

of the R-R four-form which carries U(1)R-charge ±2. Similarly the scalar of dimension 2

mixes with the scalar of dimension 5 in (2.12)–(2.13).

The mixing between different multiplets of different dimensions can confuse the dimen-

sion analysis. Namely one cannot derive the dimension of the mode by merely analyzing the

corresponding equations of motion in the large τ limit as it is usually done in the conformal

case. A proper choice of basis fluctuations may be required to identify the corresponding

multiplet structure and the dimensions. To illustrate this point we consider an example of

the decoupled vector multiplet.

In section 3 the scalar particle χ̃ described by (2.14) was found to be degenerate with

the vector fluctuation Ã that satisfies the same equation (3.10). Clearly both states must

belong to the same j = 1/2 multiplet. As they satisfy the same equation the naive large

τ analysis implies that they have the same dimension ∆ = 5. This must be wrong as

the bosonic states from the j = 1/2 multiplet have the dimensions ∆1,∆0 that differ by

∆1 − ∆0 = 1.

To resolve the puzzle we notice that the vector Ã mixes with other degrees of freedom,

namely H and Ñ. In section 3 we chose Ã to be an independent variable, but we can

choose H to be an independent variable instead (Ñ cannot be chosen as an independent

variable as it vanishes in this case). After eliminating Ã and redefining H̃ =
√
IK sinh τ H

the system (3.6)–(3.8) reduces to the equation

H̃′′ +

(

1

2

I ′′

I
− (K sinh τ)′′

K sinh τ
+
I ′

I

(K sinh τ)′

K sinh τ
− 3

4

I ′2

I2

)

H̃ + m̃2 I

K2
H̃ = 0 . (5.3)

In the large τ limit this equation behave as

H̃′′ − 16

9
H̃ ≃ 0 , (5.4)

which indicates that H has dimension ∆ = 6, in accordance with the j = 1/2 multiplet

structure. This is exactly what we expected since H corresponds to the fluctuation aµν

from table 1. The latter indeed has dimension six.

Let us note that one cannot favor (5.3) over (3.10) without knowledge of the su-

permultiplet structure. In fact both equations (3.10) and (5.3) possess the same spec-

trum as they can be related to each other by the Supersymmetric Quantum Mechanics

(SQM) transformation. More precisely this means that there are two first order differ-

ential operators Q+ and Q−, such that Q+Q−ψ = m2ψ gives the equation (3.10), while

Q−Q+ψ = m2ψ leads to (5.3). The SQM transformation ψ → Qψ which turns the solution

of one equation into the solution of another changes the dimension of the corresponding

mode. For the multiplets with half-integer j the bosonic states should have different di-

mensions |∆+− − ∆−+| = 1 and the SQM transformation is a five-dimensional truncation
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of the ten-dimensional supersymmetry transformation. Among explicit examples there are

the j = 1/2 multiplet considered in this paper and the graviton multiplet studied in [26].

The latter contains two bosonic states of dimension 3 and 4, and the corresponding equa-

tions are also related by a SQM transformation.

Our logic also suggests that in addition to the equations (4.15)–(4.16) there should be

a SQM-related system of equations governing the dynamics of the vectors B+, C̃ with the

same spectrum and with the large τ behavior that corresponds to the correct dimensions 3

and 6. It would be interesting to find this system explicitly by choosing D as an independent

variable instead of C.

The bosonic states from the multiplets with integer j have the same dimensions and

hence should be described by the same equation. Thus each j = 1 multiplet containing

vector X and axial vector Y is described by a single equation governing both particles.

5.3 Operators of the dual gauge theory

In section 2.2 we explained how the four-dimensional massive multiplets discussed above

are embedded in the structure of the superconformal multiplets of the KW theory [17].

Namely they exhaustively match the spectrum of the shortened SU(2) × SU(2) singlet

multiplets of Vector type I and Gravitino types II and IV. Let us remind the reader of the

operators that correspond to those superconformal multiplets.

The Betti multiplet, which is the “massless” type I Vector Multiplet (here quotes

indicate that masslessness refers to the five-dimensional mass), corresponds to the operator

U = TrAeV Āe−V − TrBeV B̄e−V . (5.5)

The lowest component of this operator Tr
(

AĀ−BB̄
)

is dual to the scalar U [13] and has

dimension ∆ = 2.

The complex type IV Gravitino multiplet corresponds to the operator

L̄2k
α̇ = Tr eV W̄α̇e

−V W 2(AB)k , (5.6)

where k labels representations of the R-symmetry group. The lowest (spin 1/2) component

of this operator has dimension ∆ = 3/2 k + 9/2. The SU(2) × SU(2) invariant sector

corresponds to k = 0. In this case the dependence on the bi-fundamental fields A and

B vanishes

O = Tr eV W̄α̇e
−VW 2 . (5.7)

This is very interesting as this operator belongs to the pure gauge N = 1 SYM sector of

the dual field theory. For k = 0 the Gravitino multiplets of types II and IV are similar to

each other. In particular, the type II multiplet corresponds to the complex conjugate of

the operator L20
α (5.7).

The five-dimensional superconformal multiplets split into the irreducible representa-

tions of the superalgebra in four dimensions. We saw that the Gravitino II and Gravitino IV

multiplets split into four towers of massive supermultiplets, from which the lightest ones

are presented in the figure 1. Down the throat they mix with the Betti multiplet and with
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each other. This means that the dual operators mix with each other at low energies. It

would be interesting to understand how this mixing affects the masses of the corresponding

glueballs from the field theory point of view.

6 Discussion and final remarks

In this paper we discussed the I-odd SU(2) × SU(2) invariant bosonic excitations over

the KS solution. At the massless level there are two spin 0 zero states: a Goldstone

pseudoscalar that corresponds to the spontaneously broken U(1)Baryon and a scalar related

to the expectation value of the baryon operators. Together with fermions these states

form a j = 0 scalar supermultiplet. At the massive level the supersymmetry representation

changes so that the pseudoscalar is eaten by the Betti pseudovector giving rise to a tower of

j = 1/2 vector supermultiplets. In the conformal case the j = 1/2 multiplets are embedded

into the “massless” Vector Multiplet of type I [17].

There are two more towers of massive spin 0 modes (scalar and pseudoscalar) and six

more massive spin 1 towers (3 vector and 3 axial vector). In the conformal case they belong

to a combination of the shortened Gravitino Multiplets II and IV.

The two massive scalar excitations mix with each other while the massive pseudoscalar

excitation decouples. Similarly the seven massive (pseudo)vectors split into two non-

interacting subsystems of three vectors and four axial vectors. The system of three vectors

contains the superpartner of the only massive pseudoscalar and two vectors X±. The sys-

tem of four axial vectors contains two superpartners of the two coupled massive scalars

and the two axial vectors Y±. The states X+,Y+ and X−,Y− are degenerate in pairs and

form two j = 1 “gravitino” multiplets that consist of a vector, an axial vector and the spin

1/2 and 3/2 fermions.

The spin 0 massive modes from the I-odd sector were found and studied in [15].

In particular the spectra of the corresponding j = 1/2 supermultiplets were calculated

numerically. In this work we identified the anticipated vector superpartners of the spin 0

states together with the remaining I-odd vector states and computed numerically the

spectra of the two j = 1 multiplets. The results for the lightest states together with their

JPC quantum numbers were presented in the figure 1.

An interesting task for the future would be to generalize our analysis to the I-even

sector and identify all SU(2) × SU(2) invariant bosonic modes of the KS theory. Some

I-even states are already known. Among them are the vector and the spin two states from

the Graviton multiplet (the lightest modes are shown in figure 1). In fact these states

are likely to be the only bosonic non-scalar states in the SU(2) × SU(2) invariant I-even

sector. Indeed there are no spin 1 I-even excitations of B2 and C2 and the only possible

spin 1 fluctuations of the metric were considered in [23] and [25]. Some of the scalar states,

namely a system of seven 0++ excitations were studied by M. Berg et al. in [23, 24]. They

calculated the spectra of the particles but did not identify the corresponding operators.

Besides an obvious task to find the corresponding pseudoscalar superpartners it would be

interesting to match the resulting supermultiplets to the superconformal multiplets of [17].
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Figure 2. (a) Pure gauge sector of the KS theory. Conjectured positions of 0++ and 0−+ states are

marked by dashed lines. (b) Spectrum of non-supersymmetric pure glue SU(3) theory [30]. Both

spectra are normalized to the mass of 2++ state.

Comparing our results with those for a pure gauge non-supersymmetric theory may

give a sensible prediction for the masses of some of the lightest I-even scalars. As we

observed above, some of the fluctuations considered in this paper are dual to the opera-

tors that do not contain the bi-fundamental fields A and B. In particular, the graviton

multiplet, which contains 1++ and 2++ states, is dual to the “supercurrent” operator

Vαα̇ = TrWαe
V W̄α̇e

−V [29]. Also the states of the Gravitino Multiplets correspond to

the components of the superfield O = Tr eV W̄α̇e
−VW 2 in the conformal case. In the KS

theory however, the latter mix with the states from the Betti multiplet, dual to A and B

dependent operators. Below we plot the lightest states from the pure gauge sector of the

KS theory (figure 2.a) and compare them with those of the pure SU(3) theory (figure 2.b).

In figure 2.a we employ a qualitative approach, ignoring the mixing between the states

from the pure gauge sector (i.e. A and B independent) and from the KK sector (with A

or B).

In the figure 2.a we present only those states from figure 1 that belong to the pure

gauge sector of the KS theory. The masses of the states are normalized to the mass of the

2++ state. We have also plotted two light I-even scalar multiplets, which we expect to

see in the spectrum. These two multiplets should correspond to a mixture of the following

pure N = 1 SYM operators: the gluino bilinear λλ of dimension 3 and the dimension 4

operators TrFµνF
µν and TrFµν F̃

µν . These multiplets have not been identified yet and

we mark their position with dashed lines. Their masses in figure 2.a are conjectured based

on the comparison with the pure glue SU(3) theory. It is also possible that some of the

two 0++ particles in question is a part of the seven scalar system of [23, 24].

In figure 2.b we plot the lattice results of Morningstar and Peardon [30] for spectrum

of the pure glue SU(3) theory, which we also normalize to the mass of the 2++ state.

We shade the irrelevant high spin states, which cannot be described in the supergravity

approximation. Although the two theories are very different, the relative masses of the

states are surprisingly similar. Indeed each state from the pure glue SU(3) theory has a

counterpart in the pure gauge sector of the KS theory, with the same quantum numbers,
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that has a similar mass (measured in the units of 2++ mass). Besides the counterparts of

the pure glue SU(3) theory states, the figure 2.a also contains their superpartners and even

one “extra” vector multiplet (a 0−− scalar and a 1−− vector). In general the additional

states are attributed to the fermionic degrees of freedom which are absent from the pure

glue SU(3) theory.

The similarity between figure 2.a and 2.b is not immediately clear and may appear

coincidental. Moreover, in the holographic studies of other gravity backgrounds (e.g. [31])

the glueball spectra were also observed to be qualitatively similar to the one from figure 2.b.

Although the reason for such a universality is not obvious, it supports the claim that

the holographic approach can be used for qualitative analysis of the properties of usual

(small N , non-supersymmetric) gauge theories at strong coupling. Among potentially

interesting questions are the glueball spectra and non-perturbative correlation functions of

glueball operators. Such questions would be addressed, for example, should the glueballs

be discovered experimentally. A scenario, in which this may happen was recently described

in [32]. The glueballs, like the ones from figure 2.b, were considered there as a possible

light sector of the hidden-valley-like models of physics above the TeV scale [33].

Another similar situation, where holographic analysis may be useful, is qualitative

investigation of the physics of hidden sector that dynamically breaks supersymmetry (e.g.

like in [34]). A model where the hidden sector is in fact embedded in the Klebanov-

Strassler theory with an extra content was recently proposed in [35]. In view of these

recent developments further detailed analysis of the KS solution is important for various

phenomenology applications.
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A Useful facts about KS background

Here we present some useful information about the KS solution. We follow the notations

of [11, 15] and set gS = α′ = 1 and M = 2.

We start with listing the external differentials for the SU(2) × SU(2) invariant forms
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on T 1,1

dg5 = −
(

g1 ∧ g4 + g3 ∧ g2
)

, (A.1)

d(g1 ∧ g3 + g2 ∧ g4) = (g1 ∧ g2 − g3 ∧ g4) ∧ g5 . (A.2)

d(g1 ∧ g2) = −1

2

(

g1 ∧ g3 + g2 ∧ g4
)

∧ g5 , (A.3)

d(g3 ∧ g4) = −d(g1 ∧ g2) . (A.4)

The NSNS two-form of the KS solution and the corresponding field strength are

B2 = f(τ)g1 ∧ g2 + k(τ)g3 ∧ g4 , (A.5)

H3 = dB2 = dτ ∧ (f ′g1 ∧ g2 + k′g3 ∧ g4) +
1

2
(k − f)g5 ∧ (g1 ∧ g3 + g2 ∧ g4) , (A.6)

while the RR three-form field strength is

F3 = g5 ∧ g3 ∧ g4 + d[F (τ)(g1 ∧ g3 + g2 ∧ g4)] (A.7)

= g5 ∧ g3 ∧ g4(1 − F ) + g5 ∧ g1 ∧ g2F + F ′dτ ∧ (g1 ∧ g3 + g2 ∧ g4) .

They are defined with help of the auxiliary functions

F (τ) =
sinh τ − τ

2 sinh τ
,

f(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ − 1) , (A.8)

k(τ) =
τ coth τ − 1

2 sinh τ
(cosh τ + 1) ,

which satisfy some useful identities like

k − f = 2F ′ , (A.9)

f ′ = (1 − F ) tanh2(τ/2) , (A.10)

k′ = F coth2(τ/2) . (A.11)

Following [1] we also introduce the function ℓ(τ) via

F5 = (1 + ∗)B2 ∧ F3 = (1 + ∗) ℓ(τ)ω2 ∧ ω3 . (A.12)

It is convenient to express it through the auxiliary functions from above

ℓ(τ) = 2f + 4FF ′ ≡ 2f(1 − F ) + 2kF . (A.13)

The metric of the deformed conifold is

ds2 =
ǫ4/3K

2

(

dτ2 + (g5)2

3K3
+ sinh2

(τ

2

)

(

(g1)2 + (g2)2
)

+ cosh2
(τ

2

)

(

(g3)2 + (g4)2
)

)

.

(A.14)
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The inverse metric components written in the dτ, g1, . . . , g5 basis are

G11 = G22 =
2

ǫ4/3K(τ) sinh2(τ/2)h1/2(τ)
, (A.15)

G33 = G44 =
2

ǫ4/3K(τ) cosh2(τ/2)h1/2(τ)
, (A.16)

G55 = Gττ =
6K(τ)2

ǫ4/3h1/2
, (A.17)

√
−G =

ǫ4

96
h1/2 sinh2 τ . (A.18)

Here

K(τ) =
(sinh(2τ) − 2τ)1/3

21/3 sinh τ
, (A.19)

and the warp factor is

h(τ) = 4 · 22/3ǫ−8/3I(τ) , (A.20)

I(τ) ≡
∫ ∞

τ
dx

x coth x− 1

sinh2 x
(sinh(2x) − 2x)1/3 . (A.21)

Hence

h′(τ) = −16ǫ−8/3F ′(τ)K(τ) . (A.22)

Some useful relations between the metric components include:

h
√
−G(G11)2G55 = coth2 τ

2
, (A.23)

h
√
−G(G33)2G55 = tanh2 τ

2
, (A.24)

h
√
−GG11G33G55 = 1 , (A.25)

f ′(G11)2 = (1 − F )G11G33 , (A.26)

k′(G33)2 = FG11G33 ; (A.27)

h1/2
√
−G(G55)2 =

3ǫ4/3

8
K4 sinh2 τ , (A.28)

h1/2
√
−GG11G33 =

ǫ4/3

6K2
, (A.29)

h
√
−GG55 =

ǫ8/3h

16
K2 sinh2 τ , (A.30)

h3/2
√
−G =

ǫ4h2

96
sinh2 τ , (A.31)

G55

√
h

=
6K2

ǫ4/3h
. (A.32)

I-symmetry. I-symmetry is the Z2-symmetry of the KS solution. It interchanges the

two spheres (θ1, φ1) and (θ2, φ2) and changes the sign of F3 and H3. Its action on the
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SU(2) × SU(2) invariant forms is as follows:

g5 → g5 , (A.33)

dg5 → dg5 , (A.34)

g1 ∧ g2 → −g1 ∧ g2 , (A.35)

g3 ∧ g4 → −g3 ∧ g4 , (A.36)

g1 ∧ g3 + g2 ∧ g4 → −(g1 ∧ g3 + g2 ∧ g4) . (A.37)

B Derivation of the linearized equations

Let us first make a small digression about our conventions. We choose the names for the

forms in the ansatz so as to possibly keep the similarity with notations used in the similar

calculation for the KT limit in [15]. The 1-forms (vectors) are shown in boldface. We

work with the (− + ++) Minkowski signature. The four dimensional operations such as

the Hodge star ∗4 and Laplacian �4 are performed w.r.t. the standard Minkowski metric

(without the warp factor). As it was explained, the four dimensional one-forms are all

divergence free:

d4 ∗4 F = 0 . (B.1)

The eigenvalue of the 4-Laplacian �4 is m2
4, however for compactness we shall express all

our formulae in terms of the dimensionless combination m̃2:

m2
4 =

3 ǫ4/3

2 · 22/3
m̃2 . (B.2)

B.1 3-vector system

With the ansatz (3.1), (3.2) and (3.3), Bianchi identity for F5 at the linear order in per-

turbation leads to four independent equations when written in components. Those are

1

2
K − 1

2
L + M′ + N = −F ′(A + E) , (B.3)

h
√
−GG55

(

(G11)2K + (G33)2L
)

= H , (B.4)

h
√
−G(G33)2G55

�4L − h1/2
√
−GG11G33(G55)2N = F�4H , (B.5)

[

h
√
−G(G33)2G55L

]′
− h

√
−GG11G33G55M = FH′ . (B.6)

Equations of motion for F3 give the two equations:

− 2h
√
−GG55

�4E = 2(k − f)h1/2
√
−GG11G33(G55)2N + ℓ�4H , (B.7)

[

2h
√
−GG55E

]′
= −2h

√
−GG55

(

f ′(G11)2K + k′(G33)2L
)

−

−2(k − f)h
√
−GG11G33G55M− ℓH′ . (B.8)

Another pair of equations appear from H3 equation of motion:
[

h1/2
√
−G(G55)2A′

]′
− 2h1/2

√
−GG11G33A + h

√
−GG55

�4A = (B.9)

= −2F ′h1/2
√
−GG11G33(G55)2N ,

[

2h
√
−GG55H′

]′
+ 2h3/2

√
−G�4H = 2(1 − F )K + 2FL + 4F ′M− ℓE . (B.10)
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No other supergravity equations contribute. In fact, some equations in the system (B.3)–

(B.10) are algebraic and can be solved for the functions E, K, L, M in terms of the

functions N and H. After doing so and redefining N according to (3.4), one can notice

that equation (B.8) becomes an identity. Thus, there are only three independent second

order differential equations for three unknown functions Ñ, H and A. Introducing Ã =

K2 sinh τ A, those reduce to the system (3.6), (3.7), (3.8).

As mentioned in the section 3.2 to separate the eigenmodes one can first impose Ñ = 0.

Then the remaining equations for H and Ã are equivalent. After setting Ñ = 0, the

equation (3.6) becomes the first order equation (3.9). Using it, one can eliminate the first

and second derivatives of H from (3.8) and express H in terms of Ã and its derivative.

This reduces the system to just one equation (3.10). Let us stress that in this case the

ansatz for δF5 simplifies,

δF5 = (1 + ∗) d4H ∧H3 ; (B.11)

which gives a natural generalization of the KT limit ansatz in [15] to the complete KS

background (recall that in the KT limit H3 ∼ dτ ∧ ω2).

To extract the remaining two modes the equations (3.6)–(3.8) can be written in the

following form (we have done the trivial rescaling H̃ → 27/6H̃, Ã → 27/6m̃Ã):

Ã′′ − cosh2 τ + 1

sinh2 τ
Ã + m̃2 I

K2
Ã− 2−1/6m̃I ′

K3 sinh τ
Ñ = 0, (B.12)

H̃′′ +

(

1

2

I ′′

I
− (K sinh τ)′′

K sinh τ
+
I ′

I

(K sinh τ)′

K sinh τ
− 3

4

I ′2

I2

)

H̃ + m̃2 I

K2
H̃+

+
2−1/6

√
I

K sinh τ

(

I ′Ñ

IK

)′

= 0, (B.13)

Ñ′′ −
(

cosh2 τ + 1

sinh2 τ
+

2−1/3I ′
2

IK4 sinh2 τ

)

Ñ + m̃2 I

K2
Ñ − 2−1/6I ′

IK

( √
IH̃

K sinh τ

)′

−

−2−1/6m̃I ′

K3 sinh τ
Ã = 0. (B.14)

It follows from above that the three vectors Ã, H̃, Ñ are collinear. Therefore it suffices to

consider the three scalar equations for the three variables A, H, N . The problem reduces

to finding the spectrum of the Hamiltonian H,

−H







A

H

N






=











A′′ − cosh2 τ+1
sinh2 τ

A− 2−1/6m̃I′

K3 sinh τ N

H ′′ +
(

1
2

I′′

I − (K sinh τ)′′

K sinh τ + I′

I
(K sinh τ)′

K sinh τ − 3
4

I′2

I2

)

H + 2−1/6
√

I
K sinh τ

(

I′N
IK

)′

N ′′ −
(

cosh2 τ+1
sinh2 τ

+ 2−1/3I′
2

IK4 sinh2 τ

)

N − 2−1/6I′

IK

( √
IH

K sinh τ

)′
− 2−1/6m̃I′

K3 sinh τ
A











.

Let us stress that this Hamiltonian is Hermitian w.r.t. the inner product

〈1|2〉 =

∫ ∞

0
dτ

I

K2

(

A1A2 +H1H2 +N1N2

)

, (B.15)
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and the mass eigenvalues are found from the equation

H







A

H

N






= m̃2 I

K2







A

H

N






. (B.16)

As a consequence, different eigenvectors are orthogonal with the weight I/K2.

We have found the decoupled mode which corresponds to setting N ≡ 0. This corre-

sponds to the subspace of the form (see equation (B.14)):

(A ,H ,N) =

(

−K
2 sinh τ

m̃I

( √
IH

K sinh τ

)′

,H , 0

)

. (B.17)

It is natural to suggest that the two remaining modes (Â, Ĥ, N̂ ) belong to the orthogonal

complement of this subspace. Namely,

∫

dτ
I

K2

(

−ÂK
2 sinh τ

m̃I

( √
IH

K sinh τ

)′

+ Ĥ H

)

=

∫

dτ

( √
I

K sinh τ

(

Â sinh τ

m̃

)′

+
I

K2
Ĥ

)

H = 0. (B.18)

The latter is satisfied by

m̃Ĥ = − K√
I sinh τ

(

Â sinh τ
)′
, (B.19)

or

Â′ = −m̃
√
I

K
Ĥ − coth τ Â. (B.20)

Using this expression one can eliminate all the derivatives of A from (B.12) and obtain

another first order relation,

Ĥ ′ = −
(

log

√
I

K sinh τ

)′

Ĥ + m̃

√
I

K
Â− 2−1/6I ′√

IK2 sinh τ
N̂ . (B.21)

Differentiating (B.21) and eliminating Â and Â′ using (B.20) and (B.21) one recovers the

equation (B.13) for Ĥ. Thus the equation (B.13) can be omitted from the system, and Ĥ

can be expressed via Â using (B.20). After the elimination of Ĥ the system of the two

equations (B.12) and (B.14) for Â and N̂ reproduces the system (3.12), (3.13). As it is

shown in the main text, these two equations decouple giving rise to the two modes X±.
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B.2 4-vector system

Similarly to the previous example the excitations (4.1), (4.2) and (4.3) lead to the following

linearized equations. The Bianchi identity gives five equations

− 1

2
h
√
−GG55

(

(G11)2P − (G33)2Q
)

+
(

h
√
−GG11G33G55R

)′
= F ′D′ , (B.22)

−
(

h1/2
√
−G(G33)2(G55)2G

)′
+ h

√
−G(G33)2G55

�4Q = f ′�4D , (B.23)

−
(

h1/2
√
−G(G11)2(G55)2F

)′
+ h

√
−G(G11)2G55

�4P = k′�4D , (B.24)

F + P′ − R = FJ + f ′C , (B.25)

G + Q′ + R = (1 − F )J + k′C .(B.26)

A pair of equations come from the F3 equation of motion:

[

h1/2
√
−G(G55)2C′

]′
− 2h1/2

√
−GG11G33C + h

√
−GG55

�4C = (B.27)

= h1/2
√
−G(G55)2

(

f ′(G11)2F + k′(G33)2G
)

,
[

2h
√
−GG55D′

]′
+ 2h3/2

√
−G�4D = 2k′P + 2f ′Q + 4F ′R + ℓJ ; (B.28)

and a pair of equations from the equation of motion for H3:

2h
√
−GG55

�4J = 2h1/2
√
−G(G55)2

(

F (G11)2F + (1 − F )(G33)2G
)

+ ℓ�4D, (B.29)
[

2h
√
−GG55J

]′
= 2h

√
−GG55

(

F (G11)2P + (1 − F )(G33)2Q
)

+

+4F ′h
√
−GG11G33G55R + ℓD′ . (B.30)

As in the case of the previous ansatz, one of the equations is not independent and it

is easy to demonstrate that any of the equations (B.22)–(B.24) or (B.29)–(B.30) can be

eliminated. Thus, we obtain a system of eight equations for eight unknown forms. To write

it in a more convenient form we introduce F̃ and G̃ as in (4.9) and (4.10).

We solve the algebraic equations for ansatz functions P, Q, R and J, which we express

in terms of the functions F̃ and G̃. The remaining four coupled second order differential

equations are most conveniently written in terms of the functions I, K, sinh τ and their

derivatives. This way we obtain a system

F̃′′ −
[

2

sinh2 τ
+

1

2

]

F̃ + m̃2 I

K2
F̃ +

1

2
G̃ +

(

1

2
K3 sinh τ + 2−4/3 I

′

K

)

(D′ − J) =

=
1

2
KC̃− 2−4/3I ′

K3 sinh τ
C̃ , (B.31)

G̃′′ −
[

2

sinh2 τ
+

1

2

]

G̃ + m̃2 I

K2
G̃ +

1

2
F̃ +

(

1

2
K3 sinh τ − 2−4/3 I

′

K

)

(D′ − J) =

=
1

2
KC̃ +

2−4/3I ′

K3 sinh τ
C̃ . (B.32)
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C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = 21/3 m̃2K(F̃ + G̃) − m̃2 I ′

K3 sinh τ
(F̃ − G̃) , (B.33)

D′′ +
(

log(IK2 sinh2 τ)
)′

D′ + m̃2 I

K2
D +

(I ′K2 sinh2 τ)′

IK2 sinh2 τ
D =

= −I
′

I
J +

1

IK2 sinh2 τ

(

21/3K3 sinh τ(F̃ + G̃) +
I ′

K
(F̃ − G̃)

)′
; (B.34)

where C̃ = K2 sinh τ C, and m̃ is defined in (B.2). J is expressed in terms of given functions

as follows:

J = −I
′

I
D +

21/3K

I sinh τ
(F̃ + G̃) +

I ′

IK3 sinh2 τ
(F̃ − G̃) . (B.35)

The form of the equations in (B.31)–(B.34) suggests that we introduce B± = F̃ ± G̃,

so that the equations take the form (4.4), (4.5), (4.6), (4.7) and (4.8).

The system of the equations (4.4)–(4.7) can be further reduced. We show that it can

be split into the two decoupled pairs of equations by imposing the two different constraints,

B± = 0; each of them leading to a consistent reduction.

First, we set

B− = 0 ; (B.36)

then (4.5) implies

D′ − J = − 1

K2 sinh τ
C̃. (B.37)

Differentiating this equation, using (4.8) and plugging it into the equation (4.7), one gets,

after eliminating D′ via (B.37), a simple relation

C̃′ = m̃2I sinh τ D− coth τ C̃. (B.38)

Note that differentiating (B.38) and then eliminating the derivatives of C̃ from (4.6) we

recover (B.37) (and therefore (4.7) as well). Thus, the constraint (B.36) singles out a

consistent subsystem of the two equations:

B′′
+ − 2

sinh2 τ
B+ + m̃2 I

K2
B+ = 2KC̃ , (B.39)

C̃′′ − cosh2 τ + 1

sinh2 τ
C̃ + m̃2 I

K2
C̃ = 21/3m̃2KB+ . (B.40)

After a trivial rescaling of variables it reproduces the scalar equations (2.12) and (2.13).

To find the complementary pair of equations, one can instead set

B+ = 0 . (B.41)

Equation (4.4) implies a first order constraint

D′ = − I ′

I
D +

I ′

IK3 sinh2 τ
B− +

1

K2 sinh τ
C̃ . (B.42)

– 24 –



J
H
E
P
0
5
(
2
0
0
9
)
1
0
5

Using this equation one can eliminate the derivatives of D from (4.7) and get the relation

C̃′ = −m̃2I sinh τ D − coth τ C̃. (B.43)

Note that after eliminating the C̃ derivatives from (4.6) using this equation we re-

cover (B.42) (and thus (4.4) and (4.7)). There remains a consistent subsystem of the

two equations for B− and C̃, (4.19) and (4.20). As it is shown in the main text, they can

be further decoupled, yielding the two equations identical to (3.14).
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